American Planning Association **Long Island Section East End Conference**

October 15, 2019

Coastal Resiliency Program Beaches, Dunes & Barrier Islands

Prepared By

Aram Terchunian, M.Sc.

First Coastal Consulting

PO Box 1212 Westhampton Beach NY 11978

www.firstcoastal.com

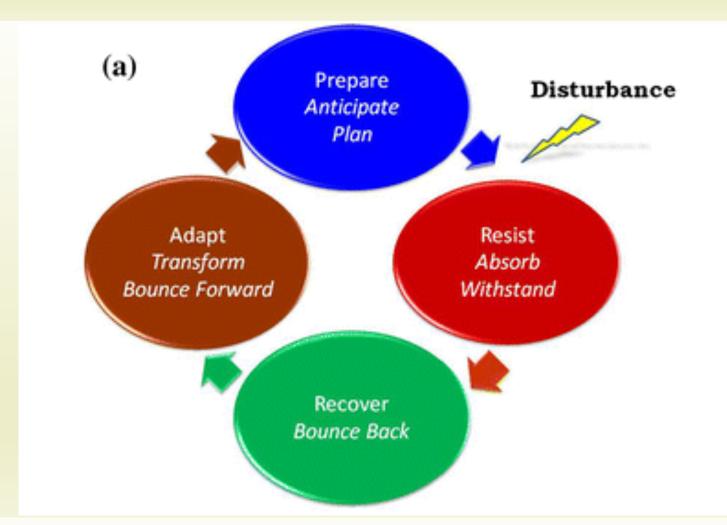
aram@firstcoastal.com

631 288 2271 631 288 8949 fax


516 982 0743 cell

COASTAL RESILIENCE | Bouncing back & building beyond.

Assess resilience and begin planning for the next disaster.


Building resilience is an iterative process.

October 15, 2019

October 15, 2019

October 15, 2019

Coastal Risk Reduction & Resilience Measures

Measure	Definition	Effect	Examples
Natural	Created through the action of physical, biological, geologic, and chemical processes operating in nature	Shoreline erosion control, wave and surge attenuation, especially in low-energy environments; additional resilience benefits; dynamic behavior and response affect performance with respect to objectives	Barrier islands, dunes, reefs, wetlands, and riparian corridors
Nature- Based	Products of planning, engineering design, and construction incorporating natural processes that contribute to coastal risk reduction and resilience	Shoreline erosion control, wave and surge attenuation, especially in low-energy environments; dynamic behavior and response affect performance with respect to objectives	
Non- Structural	Products of public policy, management and regulatory practices; may include pricing schemes, planning, engineering design, and construction	Modify or avoid the impacts of the hazard (vs. modifying the hazard); relatively predictable level of performance with respect to objectives	Structure acquisitions or relocations, flood proofing, implementing flood warning systems, flood preparedness planning, land use regulations, development restrictions within the greatest flood hazard areas, elevated development, managed retreat, evacuation, buyout and leaseback
Structural	Products of planning, engineering design, and construction	Shoreline erosion control, wave and surge attenuation, reduced flooding; relatively predictable level of performance with respect to objectives	Levees, storm surge barrier gates, seawalls, groins, revetments, and near-shore breakwaters

October 15, 2019

Table 1: Natural and nature-based features at a glance. For more detailed information, see Appendix A. The retated features include salt marshes, wetlands, and submerged aquatic vegetation (SAV).

GENERAL COASTAL RISK REDUCTION PERFORMANCE FACTORS:

STORM INTENSITY, TRACK, AND FORWARD SPEED; SURROUNDING ZOCAL BATHYMETRY AND TOPOGRAPHY

Dunes and **Beaches**

Benefits/Processes Breaking of offshore waves

> Attenuation of wave energy Slow inland water transfer

Performance Factors

Berm height and width Beach slope Sediment grain size and supply

Dune height, crest, and width

Presence of vegetation,

Veletated Features

Benefits/Processes Breaking of offshore aves

Atteruation of wave energy Slow inland r transfer Increased infiltration

Performance Factors

Ma sh, wetland, AV elevation nd continuity egetation type and density

Oyster and Coral Reefs

Benefits/Processes Breaking of offshore wav

> Attenuation of wave energy Slow inland water transfer

Performance actors

Reef width, elevation, and roughness

Barrier Islands

Benefits/Processes

Wave attenuation and/or dissipation Sediment stabilization

Performance Factors

Island elevation. length, and width Land cover Breach susceptibility Proximity to mainland shore

Maritime Forests/Shrub Communities

Benefit / Processes

Wave ttenuation and/or dissipation Shorel ne erosion stabilization Soil retention

Performance Factors

Vegetation height nd density For est dimension Sed ment composition atform elevation

October 15, 2019

Table 2: Nonstructural features at a glance. For more detailed information, see Appendix A.

GENERAL COASTAL RISK REDUCTION PERFORMANCE FACTORS:

COLL BORATION AND STARED RESPONSIBILITY FRAMEWORK, WAVE HEIGHT, WATER LEVEL, STORM DURATION

Floodplain Policy and Management

Benefits/Processes

Improved and controlled floodplain development

Reduced opportunity for damages Improved natural coast environment

Performance Factors

Wave height
Water level
Storm duration
Agency collaboration

Floodproofing and Impact Reduction

Ber efits/Processes

Rediced opportunity or damages

Increased community resiliency

No increase in lood potential elsewhere

Performance Factors

Wave height Water level Storm duration

Flood Warning and Preparedness

Benefits/Processes

Reduced opportunity for damages

Increased community resiliency

Improved public awareness and responsibility

Performance Factors

Wave height
Water level
Storm duration

Relocation

Benefits/Processes

Reduced opportunity for damages

No increase in flood potential elsewhere

Improved natural coast environment

Performance Factors

Wave height
Water level
Storm duration

October 15, 2019

Structural Measures at a Glance

GENERAL COASTAL RISK REDUCTION PERFORMANCE FACTORS:

STORM SURGE AND WAVE HEIGHT/PERIOD, WATER LEVEL

Levees

Benefits/Processes

Surge and Wave attenuation and/or dissipation Reduce Flooding Risk Reduction for vulnerable areas

Performance Factors

Levee height, crest width, and slope Wave height and period Water level

Storm Surge Barriers

Benefits/Processes

Surge and Wave attenuation Reduced Salinity Intrusion

Performance Factors

Barrier height
Wave height
Wave period
Water level

Seawalls and Revetments

Benefits/Processes

Reduce flooding
Reduce wave
overtopping
Shoreline stabilization
behind structure

Performance Factors

Wave height
Wave period
Water level
Scour protection

Groins

Benefits/Processes

Shoreline stabilization

Performance Factors

Groin length, height, orientation, permeability and spacing

Depth at seaward end Wave height Water level

Longshore transportation rates and distribution

Detached Breakwaters

Benefits/Processes

Shoreline stabilization behind structure
Wave attenuation

Performance Factors

Breakwater height and width.

Breakwater permeability, proximity to shoreline, orientation and spacing

October 15, 2019

Floodplain Policy and Management

Benefits/Processes

Improved and controlled floodplain development

Reduced opportunity for damages

Improved natural coast environment

Performance Factors Wave height Water level Storm duration Agency collaboration

Long Island Section of the American Planning Association

American Planning Association

New York Metro Chapter

October 15, 2019

Dunes and Beaches

Benefits/Processes

Breaking of offshore waves

> Attenuation of wave energy

Slow inland water transfer

Performance Factors

Berm height and width

Beach slope

Sediment grain size and supply

Dune height, crest, and width

Presence of vegetation

October 15, 2019

Barrier Islands

Benefits/Processes

Wave attenuation and/or dissipation

Sediment stabilization

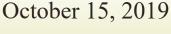
Performance Factors

Island elevation, length, and width

Land cover

Breach susceptibility

Proximity to mainland shore


October 15, 2019

Three Nature Based Projects

- Sagaponack-Bridgehampton Beach Restoration
- West of Shinnecock Inlet Project (WOSI-FIMP)
- Tiana Beach Emergency Levee Project

Sagaponack-Bridgehampton Beach Restoration PREPARE

- Two Beach Erosion Control Districts (BECD) formed under NYS

 Town Law
 - Covers 5.7 miles and approximately 140 homes
 - \$25.5 Million beach restoration project completed in 2013
 - Bonded over ten (10) year period
 - Best Restored Beach in America 2019
- Approximately 100 % of the the sand is still in the beach system
- Dunes growing > 2cubic yards/linear foot of beach/year due to natural wind-blown sand accumulation
 - No damage from Nor'Easter Melissa

October 15, 2019

Sagaponack-Bridgehampton Beach Restoration

October 15, 2019

Sagaponack-Bridgehampton Beach Restoration

October 15, 2019

Sagaponack-Bridgehampton Beach Restoration

Threatened and Endangered Species

Management and Protection Program

Pre Project 2012 – 14 Piping Plover Pairs

Post Project 2017 – 29 Piping Plover Pairs

October 15, 2019

Sagaponack-Bridgehampton Beach Restoration

Long Island Section of the American Planning Association New York Metro Chapter

October 15, 2019

West of Shinnecock Inlet Project (WOSI –FIMP) RESPOND

- Federal, State and County project
- Interim six (6) year project while overall FIMP is being reformulated
 - Project termed out in 2011
 - Emergency restoration after Sandy
- No new work scheduled until FIMP is approved by USACE HQ

October 15, 2019

West of Shinnecock Inlet Project (WOSI -FIMP)

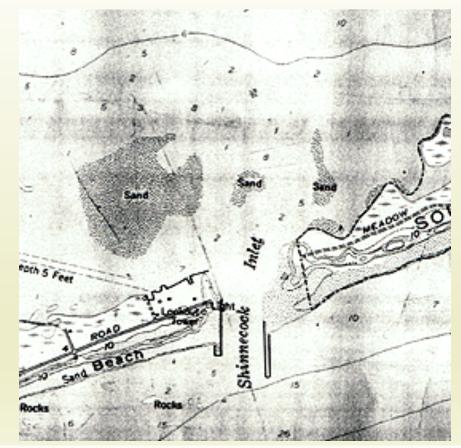
1938

The Shinnecock Inlet one month after it was opened by the hurricane. "That afternoon the Shinnecock Inlet was born." Fairchild Aerial Survey Photo


October 15, 2019

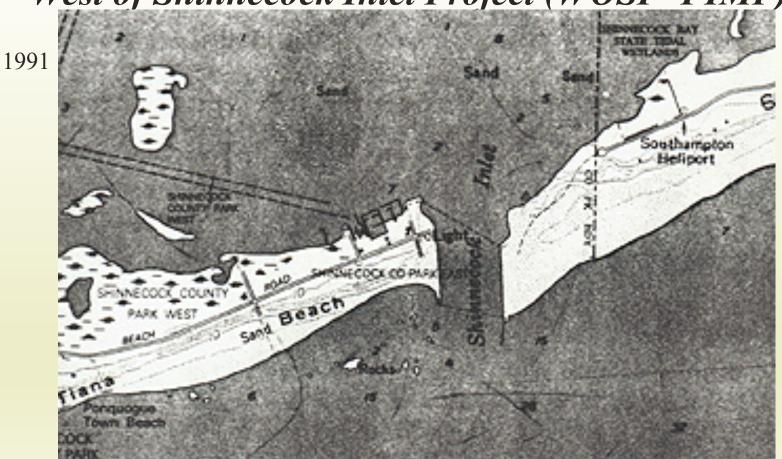
West of Shinnecock Inlet Project (WOSI –FIMP)

1942


October 15, 2019

West of Shinnecock Inlet Project (WOSI –FIMP)

1955

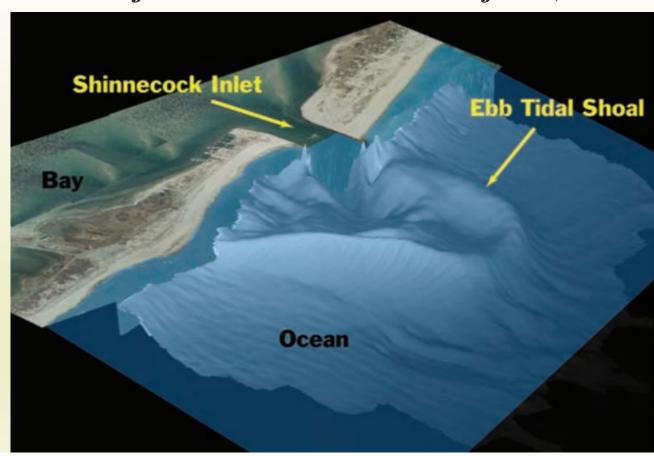


October 15, 2019

West of Shinnecock Inlet Project (WOSI -FIMP)

October 15, 2019

West of Shinnecock Inlet Project (WOSI –FIMP)


Long Island Section of the American Planning Association New York Metro Chapter

October 15, 2019

West of Shinnecock Inlet Project (WOSI –FIMP)

ards of sand from the longshore system in the ebb tidal shoal located

American Planning Association
New York Metro Chapter

October 15, 2019

West of Shinnecock Inlet Project (WOSI –FIMP)

October 15, 2019

West of Shinnecock Inlet Project (WOSI –FIMP)

October 15, 2019

West of Shinnecock Inlet Project (WOSI –FIMP)

October 15, 2019

West of Shinnecock Inlet Project (WOSI –FIMP)

October 15, 2019

West of Shinnecock Inlet Project (WOSI –FIMP)

October 15, 2019

West of Shinnecock Inlet Project (WOSI –FIMP)

October 15, 2019

Tiana Emergency Levee Project ADAPT

- New York State, Suffolk County and Southampton Town/Town Trustees
- Overwash in February 2014 threatened infrastructure and resources
 - NYS provided up to \$1,000,000 in emergency funds
 - Suffolk County provided real estate and equipment
- Southampton provided project design and supervision
- 75,000 cubic yards placed into a berm at +14 to +15 feet NAVD88

October 15, 2019

Tiana Emergency Levee Project

October 15, 2019

Tiana Emergency Levee Project

October 15, 2019

Tiana Emergency Levee Project

October 15, 2019

Tiana Emergency Levee Project

Long Island Section of the American Planning Association New York Metro Chapter

October 15, 2019

Tiana Emergency Levee Project

Long Island Section of the American Planning Association New York Metro Chapter

October 15, 2019

Tiana Emergency Levee Project

Long Island Section of the American Planning Association New York Metro Chapter

October 15, 2019

Be Resilient!!!

Prepare, Resist, Recover, Adapt

Thank You!

Aram Terchunian, M.Sc. First Coastal Corporation PO Box 1212 Westhampton Beach NY 11978

www.firstcoastal.com

aram@firstcoastal.com

www.facebook.com/firstcoastal

631 288 2271 631 288 8949 fax

516 982 0743 cell

October 15, 2019

